Halogenated Schiff base derivatives are gaining more popularity in supramolecular chemistry due to the synergistic effect of hydrogen and halogen-based noncovalent interactions, which helps to design novel therapeutic materials. In this work, we have examined the nature of molecular interactions to investigate the structure-functional relationship of a halogen-based derivative. The FTIR, HRMS and NMR spectroscopic techniques confirmed the formation of the desired novel Schiff base compound.
View Article and Find Full Text PDFThiophene substituted chalcones (1a-e) were cyclised with thiourea in presence of potassium hydroxide to get 4-substituted-6-(thiophen-2-yl)pyrimidine-2-thiols (2a-e) which were then stirred with methyl iodide to obtain 4-substituted-2-(methylsulfanyl)-6-(thiophen-2-yl)pyrimidines (3a-e). Compounds (3a-e) were refluxed with different N-methylpiperazine and N-phenylpiperazine to afford 4-substituted-2-(4-methylpiperazin-1-yl)-6-(thiophen-2-yl)pyrimidines (4a-e) and 4-substituted-2-(4-phenylpiperazin-1-yl)-6-(thiophen-2-yl)pyrimidines (5a-e). The structures of all the newly synthesised compounds 4b, 4d, 5a and 5b showed good antibacterial activity at 40μg/mlconcentration.
View Article and Find Full Text PDF