The paper presents a model of ablation of carbon by a nanosecond laser pulse that considers the kinetics of the process. The model approximates the process as sublimation and combines conduction heat transfer in the target with the gas dynamics of the ablated plume which are coupled through the boundary conditions at the interface. The ablated mass flux and the temperature of the ablating material are obtained from the conservation relations at the interface derived from the momentum solution of the Boltzmann equation for arbitrary strong evaporation.
View Article and Find Full Text PDFThis study was aimed at developing a physical model, supported by experimental observations, to describe the formation and growth of microbubbles seen in patients with mitral mechanical heart valves (MHV). This phenomenon, often referred to as high intensity transient signals (HITS), appears as bright, intense, high-velocity and persistent echoes detected by Doppler ultrasonography at the instant of closure. The long-term clinical implications of HITS has yet to be determined.
View Article and Find Full Text PDF