Publications by authors named "M Shlafman"

Finding evidence of non-trivial pairing states is one of the greatest experimental challenges in the field of unconventional superconductivity. Such evidence requires phase-sensitive probes susceptible to the internal structure of the order parameter. We report the measurement of the Little-Parks effect in the unconventional superconductor candidate 4Hb-TaS.

View Article and Find Full Text PDF

Bi-stable mechanical resonators play a significant role in various applications, such as sensors, memory elements, quantum computing and mechanical parametric amplification. While carbon nanotube based resonators have been widely investigated as promising NEMS devices, a bi-stable carbon nanotube resonator has never been demonstrated. Here, we report a class of carbon nanotube resonators in which the nanotube is buckled upward.

View Article and Find Full Text PDF

Bistable arched beams exhibiting Euler-Bernoulli snap-through buckling are widely investigated as promising candidates for various potential applications, such as memory devices, energy harvesters, sensors, and actuators. Recently, we reported the realization of a buckled suspended carbon nanotube (CNT) based bistable resonator, which exhibits a unique three-dimensional snap-through transition and an extremely large change in frequency as a result. In this article, we address a unique characteristic of these devices in which a significant change in the DC conductance is also observed at the mechanical snap-through transition.

View Article and Find Full Text PDF

Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes.

View Article and Find Full Text PDF

For practical applications in quantum electrodynamics, it has been proposed to produce frequency tuning or Q-switching by dynamically changing the dielectric constant around a nano-cavity. Local changes in the dielectric constant of a photonic cavity with finite-lifetime, may affect not only the frequency of electromagnetic cavity modes but also their quality-factor (Q). Thus, it is important to have prediction capability regarding the combined effect of these changes.

View Article and Find Full Text PDF