Optimization tasks in diagnostic radiological imaging require objective quantitative metrics that correlate with the subjective perception of observers. However, although one such metric, the structural similarity index (SSIM), is popular, it has limitations across various aspects in its application to medical images. In this study, we introduce a novel image quality evaluation approach based on keypoints and their associated unique image feature values, focusing on developing a framework to address the need for robustness and interpretability that are lacking in conventional methodologies.
View Article and Find Full Text PDFBackground: Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.
View Article and Find Full Text PDFUltrasound guidance has become the gold standard for obtaining vascular access. Angle information, which indicates the entry angle of the needle into the vein, is required to ensure puncture success. Although various image processing-based methods, such as deep learning, have recently been applied to improve needle visibility, these methods have limitations, in that the puncture angle to the target organ is not measured.
View Article and Find Full Text PDFThis study proposes a deep convolutional neural network (DCNN) classification for the quality control and validation of breast positioning criteria in mammography. A total of 1631 mediolateral oblique mammographic views were collected from an open database. We designed two main steps for mammographic verification: automated detection of the positioning part and classification of three scales that determine the positioning quality using DCNNs.
View Article and Find Full Text PDF