Publications by authors named "M Shijili"

Article Synopsis
  • Humans and animals are at risk of avian influenza, which could lead to a pandemic from a new virus that spreads effectively between humans.
  • The study conducted a meta-analysis on three microarray datasets to identify gene expression related to avian influenza, discovering 1,284 common differentially expressed genes.
  • Key findings included important biological pathways related to immune response and specific hub genes, which could provide insights for developing better treatments for the disease.
View Article and Find Full Text PDF

Bacillus anthracis, a gram-positive bacillus capable of forming spores, causes anthrax in mammals, including humans, and is recognized as a potential biological weapon agent. The diagnosis of anthrax is challenging due to variable symptoms resulting from exposure and infection severity. Despite the availability of a licensed vaccines, their limited long-term efficacy underscores the inadequacy of current human anthrax vaccines, highlighting the urgent need for next-generation alternatives.

View Article and Find Full Text PDF

Multidrug and Toxic Compound Extrusion (MATE) proteins are responsible for the transport of a wide range of metabolites out of plant cells. This helps to protect the cells from toxins and other harmful compounds. MATE proteins also play a role in plant development, by regulating the transport of hormones and other signalling molecules.

View Article and Find Full Text PDF

Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified.

View Article and Find Full Text PDF