Publications by authors named "M Shigeta"

Aim: Despite the clinical importance and significant social burden of neuropsychiatric symptoms (NPS) in dementia, the underlying neurobiological mechanism remains poorly understood. Recently, neuroimaging-derived brain-age estimation by machine-learning analysis has shown promise as an individual-level biomarker. We investigated the relationship between NPS and brain-age in amnestic mild cognitive impairment (MCI) and early dementia.

View Article and Find Full Text PDF

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.

View Article and Find Full Text PDF

Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]), intracellular Ca concentration ([Ca]), and intracellular pH (pH). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC.

View Article and Find Full Text PDF

The sympathetic nervous system is crucial for responding to environmental changes. This regulation is coordinated by the spinal sympathetic preganglionic neurons (SPNs), innervating both postganglionic neurons and the adrenal gland. Despite decades of research supporting the concept of selective control within this system, the neural circuit organization responsible for the output specificity remains poorly understood.

View Article and Find Full Text PDF