Publications by authors named "M Shatruk"

Research on the magnetoelectric (ME) effect (or spin-electric coupling) in molecule-based magnetic materials is a relatively nascent but promising topic. Molecule-based magnetic materials have diverse magnetic functionalities that can be coupled to electrical properties. Here we investigate a realization of ME coupling that is fundamental but not heavily studied─the coupling of magnetic spin level crossings to changes in electric polarization.

View Article and Find Full Text PDF

The conductivity changes associated with optical excitations and changing temperature in cobalt valence tautomer molecular thin films were investigated. Conductance switching in the presence of illumination is observed, with occasional locking in a higher conductance state, depending on the temperature, the photon energy of the illumination, and the bias voltage. Light of sufficiently short wavelengths is needed to ensure the light enhanced conductance switching, consistent with the optical absorption, but bias voltage clearly plays a role as well.

View Article and Find Full Text PDF

Ferromagnetic metal FeGeTe (FGT), whose structure exhibits weak van-der-Waals interactions between 5-atom thick layers, was subjected to liquid-phase exfoliation (LPE) in N-methyl pyrrolidone (NMP) to yield a suspension of nanosheets that were separated into several fractions by successive centrifugation at different speeds. Electron microscopy confirmed successful exfoliation of bulk FGT to nanosheets as thin as 6 nm. The ferromagnetic ordering temperature for the nanosheets gradually decreased with the increase in the centrifugation speed used to isolate the 2D material.

View Article and Find Full Text PDF

Homoleptic complexes [Fe(4bt)](ClO) (1), [Fe(2bt)](ClO) (2), and [Fe(3tpH)](ClO) (3) were obtained by a reaction between the Fe(II) precursor salt and the corresponding thiazole-based bidentate ligand (L = 4bt = 4,4'-bithiazole, 2bt = 2,2'-bithiazole, 3tpH = 3-(thiazol-2-yl)pyrazole). X-ray crystal structure determination revealed crystallization of solvent-free complex 1, a solvate 2·MeOH, and a co-crystal 3·2(3tpH). The crystal packing of all these complexes is dominated by one-dimensional interactions between the [Fe(L)] cations.

View Article and Find Full Text PDF

A family of rare-earth complexes [RE(III) = Y, La, Gd, Tb, Dy, and Er] with doubly reduced dibenzo[,]cyclooctatetraene (DBCOT) has been synthesized and structurally characterized. X-ray diffraction analysis confirms that all products of the [RE(DBCOT)(THF)][RE(DBCOT)] composition consist of the anionic sandwich [RE(DBCOT)] and the cationic counterpart [RE(DBCOT)(THF)]. Within the sandwich, two elongated π decks are slightly bent toward the metal center (avg.

View Article and Find Full Text PDF