Publications by authors named "M Serafina Ristaldi"

Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies.

View Article and Find Full Text PDF

Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is caused by the homozygous beta-globin gene mutation that can lead to ischemic multi-organ damage and consequently reduce life expectancy. On the other hand, sickle cell trait (SCT), the heterozygous beta-globin gene mutation, is still considered a benign condition. Although the mechanisms are not well understood, clinical evidence has recently shown that specific pathological symptoms can also be recognized in SCT carriers.

View Article and Find Full Text PDF

Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a widespread genetic disease associated with severe disability and multi-organ damage, resulting in a reduced life expectancy. None of the existing clinical treatments provide a solution for all patients. Gene therapy and fetal haemoglobin (HbF) reactivation through genetic approaches have obtained promising, but early, results in patients.

View Article and Find Full Text PDF