In the present work, we study an electrolyte solution confined between planar surfaces with nanopatterned charged domains, which has been connected to a bulk ionic reservoir. The system is investigated through an improved Monte Carlo (MC) simulation method, suitable for simulation of electrolytes in the presence of modulated surface charge distributions. We also employ a linear approach in the spirit of the classical Debye-Hückel approximation, which allows one to obtain explicit expressions for the averaged potentials, ionic profiles, effective surface interactions and the net ionic charge confined between the walls.
View Article and Find Full Text PDFCompend Contin Educ Dent
July 2017
Soft-tissue recession around an implant rehabilitation over time has been considered a physiologic phenomenon. The divergent profile of the abutment and the abutment's dis/reconnections are the most critical predisposing and precipitating factors regarding such gingival recession. Recent publications have discussed how tapered and marginless abutments that allow no disconnections and increase soft-tissue thickness could prevent implant rehabilitations from experiencing gingival recession.
View Article and Find Full Text PDFModels based on Au(111) face have been extensively used to describe self-assembled monolayers, as well nanoparticles and nanoclusters. However, for very small clusters (<2 nm), the chemisorption of ligands leads to surface reconstruction, making necessary the use of a more reliable model that is able to simulate the main electronic and geometrical features of these small systems. In this work, a simple model to describe the geometries and the metal-ligand bonding in chalcogenate-protected gold nanoclusters is proposed.
View Article and Find Full Text PDF