Colloidal crystals made from sub-100 nm silica nanoparticles have provided a versatile platform for the template-assisted synthesis of three-dimensionally interconnected semiconducting, metallic, and magnetic replicas. However, the detailed structure of these materials has not yet been characterized. In this study, we investigated the structures of colloidal crystalline films and germanium replicas by scanning electron microscopy and small angle X-ray scattering.
View Article and Find Full Text PDFThe development of robust production processes is essential for the introduction of advanced materials based on renewable and Earth-abundant resources. Cellulose nanomaterials have been combined with other highly available nanoparticles, in particular clays, to generate multifunctional films and foams. Here, the structure of dispersions of rod-like cellulose nanocrystals (CNC) and montmorillonite nanoplatelets (MNT) was probed using small-angle X-ray scattering within a rheological cell (Rheo-SAXS).
View Article and Find Full Text PDFTime-resolved small-angle X-ray scattering (SAXS) was used to probe the assembly of cellulose nanocrystals (CNC) and montmorillonite (MNT) over a wide concentration range in aqueous levitating droplets. Analysis of the SAXS curves of the one-component and mixed dispersions shows that co-assembly of rod-like CNC and MNT nanoplatelets is dominated by the interactions between the dispersed CNC particles and that MNT promotes gelation and assembly of CNC, which occurred at lower total volume fractions in the CNC:MNT than in the CNC-only dispersions. The CNC dispersions displayed a d ∝ φ-1/2 scaling and a low-q power-law exponent of 2.
View Article and Find Full Text PDFControlling the morphology and crystallographic coherence of assemblies of magnetic nanoparticles is a promising route to functional materials. Time-resolved small-angle X-ray scattering (SAXS) was combined with microscopy and scaling analysis to probe and analyze evaporation-induced assembly in levitating drops and thin films of superparamagnetic iron oxide nanocubes in weak magnetic fields. We show that assembly of micrometer-sized mesocrystals with a cubic shape preceded the formation of fibers with a high degree of crystallographic coherence and tunable diameters.
View Article and Find Full Text PDFUnderstanding and controlling defect formation during the assembly of nanoparticles is crucial for fabrication of self-assembled nanostructured materials with predictable properties. Here, time-resolved small-angle X-ray scattering was used to probe the temporal evolution of strain and lattice contraction during evaporation-induced self-assembly of oleate-capped iron oxide nanocubes in a levitating drop. We show that the evolution of the strain and structure of the growing mesocrystals is related to the formation of defects as the solvent evaporated and the assembly process progressed.
View Article and Find Full Text PDF