In temperate forests, the roots of various tree species are colonized by ectomycorrhizal fungi, which have a key role in the nitrogen nutrition of their hosts. However, not much is known about the molecular mechanisms related to nitrogen metabolism in ectomycorrhizal plants. This study aimed to evaluate the nitrogen metabolic response of oak plants when inoculated with the ectomycorrhizal fungus Pisolithus tinctorius.
View Article and Find Full Text PDFMycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots.
View Article and Find Full Text PDFEctomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought.
View Article and Find Full Text PDF