The dataset contains leaf venation architecture and functional traits for a phylogenetically diverse set of 122 plant species (including ferns, basal angiosperms, monocots, basal eudicots, asterids, and rosids) collected from the living collections of the University of California Botanical Garden at Berkeley (37.87° N, 122.23° W; CA, USA) from February to September 2021.
View Article and Find Full Text PDFVariation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.
View Article and Find Full Text PDFBackground: Cardiovascular responses to psychological stressors have been separately associated with preclinical atherosclerosis and hemodynamic brain activity patterns across different studies and cohorts; however, what has not been established is whether cardiovascular stress responses reliably link indicators of stressor-evoked brain activity and preclinical atherosclerosis that have been measured in the same individuals. Accordingly, the present study used cross-validation and predictive modeling to test for the first time whether stressor-evoked systolic blood pressure (SBP) responses statistically mediated the association between concurrently measured brain activity and a vascular marker of preclinical atherosclerosis in the carotid arteries.
Methods: 624 midlife adults (aged 28-56 years, 54.
Introduction: Physical activity (PA) has beneficial effects on brain health and cardiovascular disease (CVD) risk. Yet, we know little about whether PA-induced changes to physiological mediators of CVD risk influence brain health and whether benefits to brain health may also explain PA-induced improvements to CVD risk. This study combines neurobiological and peripheral physiological methods in the context of a randomised clinical trial to better understand the links between exercise, brain health and CVD risk.
View Article and Find Full Text PDF