J Orthop Translat
September 2024
Background: In healthy articular cartilage, chondrocytes are found along arcades of collagen fibers as Single Strings. With onset of cartilage degeneration this pattern changes to Double Strings. In the course of osteoarthritis Small Clusters, and finally Big Clusters form.
View Article and Find Full Text PDFThe pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM.
View Article and Find Full Text PDFDuring osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image-based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization.
View Article and Find Full Text PDFDuring osteoarthritis (OA)-triggered cartilage degeneration, the chondrocytes spatially rearrange from single to double strings, and then to small and finally big clusters. Both the extracellular matrix (ECM) and the pericellular matrix (PCM) progressively degrade in osteoarthritis, changing the overall mechanical properties of the cartilage. We investigated the mechanical properties particularly elasticity of the ECM and PCM and their interconnection as a function of chondrocyte spatial organisation.
View Article and Find Full Text PDFObjective: During osteoarthritis (OA), chondrocytes seem to change their spatial arrangement from single to double strings, small and big clusters. Since the pericellular matrix (PCM) appears to degrade alongside this reorganisation, it has been suggested that spatial patterns act as an image-based biomarker for OA. The aim of this study was to establish the functional relevance of spatial organisation in articular cartilage.
View Article and Find Full Text PDF