The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression.
View Article and Find Full Text PDFUnderstanding human, animal, and environmental microbiota is essential for advancing global health and combating antimicrobial resistance (AMR). We investigate the oral and gut microbiota of 48 animal species in captivity, comparing them to those of wildlife animals. Specifically, we characterize the microbiota composition, metabolic pathways, AMR genes, and biosynthetic gene clusters (BGCs) encoding the production of specialized metabolites.
View Article and Find Full Text PDFThe ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant .
View Article and Find Full Text PDFPurpose: To evaluate the decline in transferable embryos in preimplantation genetic testing for aneuploidy (PGT-A) cycles due to (a) non-biopsable blastocyst quality, (b) failure of genetic analysis, (c) diagnosis of uniform numerical or structural chromosomal aberrations, and/or (d) chromosomal aberrations in mosaic constitution.
Methods: This retrospective multicenter study comprised outcomes of 1562 blastocysts originating from 363 controlled ovarian stimulation cycles, respectively, 226 IVF couples in the period between January 2016 and December 2018. Inclusion criteria were PGT-A cycles with trophectoderm biopsy (TB) and next generation sequencing (NGS).
The worldwide demand of preimplantation genetic testing for aneuploidy (PGT-A) is still growing. However, chromosomal mosaic results greatly challenge the clinical practice. The recently published PGDIS Position Statement on the Transfer of Mosaic Embryos is the third PGDIS position statement on how to deal with embryos diagnosed as chromosomal mosaics (CM) and, one of many attempts of different societies and working groups to provide a guideline for clinicians, laboratories, clinics, and genetic counselors.
View Article and Find Full Text PDF