Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens.
View Article and Find Full Text PDFAlthough the assembly of the Space Station is not yet complete, now is the time to start on ground the scientific and technical realisations for the maximum return in life sciences. An important prerequisite is that all suitable ground-based techniques and scientifcal and technical infrastructures are available to plan, prepare and perform space experiments.
View Article and Find Full Text PDFThe influence of simulated microgravity weightlessness on the outcome of radiation-induced chromosomal aberrations was investigated using the clinostat as a tool to simulate weightlessness conditions. Treatments were performed in the G0 phase of human lymphocytes with 1.5 Gy of X-rays alone or in combination with the DNA synthesis inhibitor of 1-beta-D-arabinofuranosylcytosine (ara-C) to check also for possible specific radiation-induced DNA repair processes impairment (excision repair caused by base damage) under microgravity conditions.
View Article and Find Full Text PDFSperm and other flagellates swim faster in microgravity (microG) than in 1 G, raising the question of whether fertilization is altered under conditions of space travel. Such alterations have implications for reproduction of plant and animal food and for long-term space habitation by man. We previously demonstrated that microG accelerates protein phosphorylation during initiation of sperm motility but delays the sperm response to the egg chemotactic factor, speract.
View Article and Find Full Text PDFIn the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by (R) Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground").
View Article and Find Full Text PDF