Publications by authors named "M Schnizler"

Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS.

View Article and Find Full Text PDF

Previous studies on mice with a disruption of the gene encoding acid-sensing ion channel 1a (ASIC1a) suggest that ASIC1a is required for normal fear behavior. To investigate the effects of altering the subunit composition of brain ASICs on behavior, we developed transgenic mice expressing ASIC3 via the pan-neuronal synapsin I promoter. These mice express ASIC3 in the brain, where the endogenous ASIC3 protein is not detected.

View Article and Find Full Text PDF

Degenerin/epithelial Na(+) channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na(+) transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together.

View Article and Find Full Text PDF

No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments.

View Article and Find Full Text PDF

The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited.

View Article and Find Full Text PDF