We study the properties of a monitored ensemble of atoms driven by a laser field and in the presence of collective decay. The properties of the quantum trajectories describing the atomic cloud drastically depend on the monitoring protocol and are distinct from those of the average density matrix. By varying the strength of the external drive, a measurement-induced phase transition occurs separating two phases with entanglement entropy scaling subextensively with the system size.
View Article and Find Full Text PDFUnderstanding the nature of entanglement growth in many-body systems is one of the fundamental questions in quantum physics. Here, we study this problem by characterizing the entanglement fluctuations and distribution of a (d+1)-dimensional qubit lattice evolved under a random unitary circuit. Focusing on Clifford gates, we perform extensive numerical simulations of random circuits in 1≤d≤4 dimensions.
View Article and Find Full Text PDFBackground: SARS-CoV-2 pandemic affected tuberculosis (TB) management. This Italian nationwide survey assessed COVID-19 impact on TB care and outcomes.
Materials And Methods: Twenty-one hospitals or referral centres fulfilled an online survey.
We develop a trajectory-based approach for excited-state molecular dynamics simulations of systems subject to an external periodic drive. We combine the exact-factorization formalism, allowing us to treat electron-nuclear systems in nonadiabatic regimes, with the Floquet formalism for time-periodic processes. The theory is developed starting with the molecular time-dependent Schrödinger equation with the inclusion of an external periodic drive that couples to the system dipole moment.
View Article and Find Full Text PDFIn this work, we address the question of how a closed quantum system thermalizes in the presence of a random external potential. By investigating the quench dynamics of the isolated quantum spherical p-spin model, a paradigmatic model of a mean-field glass, we aim to shed new light on this complex problem. Employing a closed-time Schwinger-Keldysh path integral formalism, we first initialize the system in a random, infinite-temperature configuration and allow it to equilibrate in contact with a thermal bath before switching off the bath and performing a quench.
View Article and Find Full Text PDF