Transcripts derived from the thyroid hormone receptor alpha (TRalpha) gene are alternatively spliced resulting in a functional receptor TRalpha1 and a non-T3-binding variant TRalpha2 that can exert a dominant negative effect on the transactivation functions of other TRs. There is evidence that the ratio of TRalpha isoform transcripts can be modulated and here, we investigate whether the PPARgamma co-activator alpha (PGC-1alpha) has an effect on this splicing process. PGC-1alpha was discovered not only as a transcriptional co-activator, but also has certain motifs characteristic of splicing factors.
View Article and Find Full Text PDFThe first step in both normal haemostasis and arterial thrombosis is the interaction between collagen, von Willebrand factor (vWF), and glycoprotein Ib. The A3 domain of vWF forms the principal binding site for collagen type I and type III. Inhibition of the vWF-collagen interaction by an anti-human vWF monoclonal antibody (MoAb) 82D6A3 can be a potential way to prevent arterial thrombosis.
View Article and Find Full Text PDFMany metabolic processes occur simultaneously in the liver in different locations along the porto-central axis of the liver units. These processes are often regulated by hormones, one of which is thyroid hormone which for its action depends on the presence of the different isoforms of the thyroid hormone receptor (TR). These are encoded by two genes: c-erbA-alpha encoding TRalpha1 and TRalpha2 and their respective Delta isoforms, and c-erbA-beta which encodes TRbeta1, TRbeta2 and TRbeta3.
View Article and Find Full Text PDFThe multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion to collagen at sites of vascular damage. The binding site for collagen types I and III is located in the VWF-A3 domain. Recently, we showed that His(1023), located near the edge between the "front" and "bottom" faces of A3, is critical for collagen binding (Romijn, R.
View Article and Find Full Text PDFTransient interactions of platelet-receptor glycoprotein Ibalpha (GpIbalpha) and the plasma protein von Willebrand factor (VWF) reduce platelet velocity at sites of vascular damage and play a role in haemostasis and thrombosis. Here we present structures of the GpIbalpha amino-terminal domain and its complex with the VWF domain A1. In the complex, GpIbalpha wraps around one side of A1, providing two contact areas bridged by an area of solvated charge interaction.
View Article and Find Full Text PDF