Commun Earth Environ
May 2024
Stratification-that is, the vertical change in seawater density-exerts a subtle control on the energetics and thus the surface elevation of barotropic (depth independent) flows in the ocean. Changes in stratification therefore provide a plausible pathway to explain some of the puzzling trends in ocean tides evident in tide gauge and, more recently, satellite altimetry data. Using a three-dimensional global ocean model, we estimate that strengthening of stratification between 1993 and 2020 caused open-ocean trends of order 0.
View Article and Find Full Text PDFJ Geophys Res Planets
December 2021
Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis.
View Article and Find Full Text PDFJ Geophys Res Oceans
January 2021
We document an exceptional large-spatial scale case of changes in tidal range in the North Sea, featuring pronounced trends between -2.3 mm/yr at tide gauges in the United Kingdom and up to 7 mm/yr in the German Bight between 1958 and 2014. These changes are spatially heterogeneous and driven by a superposition of local and large-scale processes within the basin.
View Article and Find Full Text PDFWe revisit the problem of modeling the ocean's contribution to rapid, non-tidal Earth rotation variations at periods of 2-120 days. Estimates of oceanic angular momentum (OAM, 2007-2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest configuration is on a grid. We show that the OAM product by the Earth System Modeling Group at GeoForschungsZentrum Potsdam has spurious short period variance in its equatorial motion terms, rendering the series a poor choice for describing oceanic signals in polar motion on time scales of less than 2 weeks.
View Article and Find Full Text PDFDiurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere-ocean-driven S[Formula: see text] terms that deviate by more than 30 [Formula: see text]as (microarcseconds) from the VLBI-observed harmonic of [Formula: see text] [Formula: see text]as.
View Article and Find Full Text PDF