Publications by authors named "M Scaltriti"

The co-occurrence of germline and somatic oncogenic alterations is frequently observed in breast cancer, but their combined biologic and clinical significance has not been evaluated. To assess the role of germline-somatic interactions on outcomes in routine practice, we developed an integrated clinicogenomic pipeline to analyze the genomes of over 4,500 patients with breast cancer. We find that germline (g) -associated tumors are enriched for loss-of-function mutations and manifest poor outcomes on standard-of-care, front-line CDK4/6 inhibitor (CDK4/6i) combinations.

View Article and Find Full Text PDF

The incorporation of novel therapeutic agents such as antibody-drug conjugates, radio-conjugates, T-cell engagers, and chimeric antigen receptor cell therapies represents a paradigm shift in oncology. Cell-surface target quantification, quantitative assessment of receptor internalization, and changes in the tumor microenvironment (TME) are essential variables in the development of biomarkers for patient selection and therapeutic response. Assessing these parameters requires capabilities that transcend those of traditional biomarker approaches based on immunohistochemistry, in situ hybridization and/or sequencing assays.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied advanced cancers to find the best targeted treatments by looking at gene changes in tumors.
  • They tested samples from 304 patients and found that most (78%) had important gene changes, with many tumors showing a marker called PD-L1.
  • The findings suggest that understanding the specific gene changes in different cancer types can help doctors decide on treatments and get patients into clinical trials.
View Article and Find Full Text PDF

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2.

View Article and Find Full Text PDF

Purpose: Dysregulation of the PI3K pathway is one of the most common events in breast cancer. Here we investigate the activity of the PI3K inhibitor MEN1611 at both molecular and phenotypic levels by dissecting and comparing its profile and efficacy in HER2 + breast cancer models with other PI3K inhibitors.

Methods: Models with different genetic backgrounds were used to investigate the pharmacological profile of MEN1611 against other PI3K inhibitors.

View Article and Find Full Text PDF