Purpose: Discretizing tomographic forward and backward operations is a crucial step in the design of model-based reconstruction algorithms. Standard projectors rely on linear interpolation, whose adjoint introduces discretization errors during backprojection. More advanced techniques are obtained through geometric footprint models that may present a high computational cost and an inner logic that is not suitable for implementation on massively parallel computing architectures.
View Article and Find Full Text PDFWe demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.
View Article and Find Full Text PDFMicroring resonators made from silicon are becoming a popular microscale device format for generating photon pairs at telecommunications wavelengths at room temperature. In compact devices with a footprint less than 5 × 10(-4) mm2, we demonstrate pair generation using only a few microwatts of average pump power. We discuss the role played by important parameters such as the loss, group-velocity dispersion and the ring-waveguide coupling coefficient in finding the optimum operating point for silicon microring pair generation.
View Article and Find Full Text PDFUsing two-photon (Franson) interferometry, we measure the entanglement of photon pairs generated from an optically-pumped silicon photonic device consisting of a few coupled microring resonators. The pair-source chip operates at room temperature, and the InGaAs single-photon avalanche detectors (SPADs) are thermo-electrically cooled to 234K. Such a device can be integrated with other components for practical entangled photon-pair generation at telecommunications wavelengths.
View Article and Find Full Text PDFDirectly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement.
View Article and Find Full Text PDF