How humans coordinate digit forces to perform dexterous manipulation is not well understood. This gap is due to the use of tasks devoid of dexterity requirements and/or the use of analytical techniques that cannot isolate the roles that digit forces play in preventing object slip and controlling object position and orientation (pose). In our recent work, we used a dexterous manipulation task and decomposed digit forces into , the internal force that prevents object slip, and , the force responsible for object pose control.
View Article and Find Full Text PDFResponse inhibition in humans is important to avoid undesirable behavioral action consequences. Neuroimaging and lesion studies point to a locus of inhibitory control in the right inferior frontal gyrus (rIFG). Electrophysiology studies have implicated a downstream event-related potential from rIFG, the fronto-central P300, as a putative neural marker of the success and timing of inhibition over behavioral responses.
View Article and Find Full Text PDFDexterous manipulation relies on the ability to simultaneously attain two goals: controlling object position and orientation (pose) and preventing object slip. Although object manipulation has been extensively studied, most previous work has focused only on the control of digit forces for slip prevention. Therefore, it remains underexplored how humans coordinate digit forces to prevent object slip and control object pose simultaneously.
View Article and Find Full Text PDF