Vegetation has a well-known potential for mitigating urban overheating. This work aims to explore the effects of enhancing urban greenery in Melbourne (Australia) through a configuration of the Weather Research and Forecasting (WRF) model including the Building Effect Parameterization and the Local Climate Zones and presents novelties in: i) covering two-months and ii) focusing on air circulation and buildings cooling energy demand through the ventilation coefficient (VC) and the cooling degree hours (CDHs). A control case and two "what-if" scenarios with a growing green coverage equal to 35 % (control case), 50 % (modest increase) and 60 % (robust increase) have been designed and then simulated for January and February 2019.
View Article and Find Full Text PDFUnderstanding and evaluating the implications of photovoltaic solar panels (PVSPs) deployment on urban settings, as well as the pessimistic effects of densely populated areas on PVSPs efficiency, is becoming incredibly valuable. Thus, the deployment of low-efficiency, low-cost, and widely available PVSPs may diminish total solar reflectance, raising the risks of PVSPs-based urban heating, particularly during the summertime heatwaves. This study employs and assesses physical parameterizations that account for the impact of PVSPs on Sydney's urban environment in the context of the mesoscale model weather research and forecasting (WRF).
View Article and Find Full Text PDFPervious pavement system (PPS) is a suitable alternative technique for mitigating urban flooding and urban heat island (UHI) simultaneously. However, existing literature has revealed that PPSs cannot achieve the expected permeability and evaporation. To overcome this gap, this study presents an elaborate review of problems associated with PPSs and highlights its benefits to stormwater management and UHI mitigation.
View Article and Find Full Text PDFIn this study we investigated the association between daily weather types (WTs) and the Urban Heat Island (UHI) in two Mediterranean coastal metropolises. For this purpose, we employed an existing weather type classification scheme and examined which WTs influence or drive the intensity of the UHI. We used the gridded weather typing classification (GWTC), in which meteorological conditions at a single location are categorized in daily WTs.
View Article and Find Full Text PDFPhotoluminescent materials are advanced cutting-edge heat-rejecting materials capable of reemitting a part of the absorbed light through radiative/non-thermal recombination of excited electrons to their ground energy state. Photoluminescent materials have recently been developed and tested as advanced non-white heat-rejecting materials for urban heat mitigation application. Photoluminescent materials has shown promising cooling potential for urban heat mitigation application, but further developments should be made to achieve optimal photoluminescence cooling potential.
View Article and Find Full Text PDF