Publications by authors named "M Salvio"

Objectives: Graft-versus-host disease (GVHD) of central nervous system is an atypical and rare manifestation of chronic GVHD, presenting with a heterogeneous spectrum of signs and symptoms. Diagnosis of neurological manifestations of GVHD can be highly challenging and remain associated with dismal prognosis, significant morbidity, and reduced quality of life.

Case Presentation: In this report, we describe a 39-year-old woman developing neurological signs and symptoms 8 months after allogeneic HSCT magnetic resonance imaging showed multifocal hyperintense lesions involving the periventricular region and frontal subcortical white matter.

View Article and Find Full Text PDF

Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in , the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei.

View Article and Find Full Text PDF

Background: ALS is an incurable neuromuscular degenerative disorder. A familiar form of the disease (fALS) is related to point mutations. The most common one is an expansion of a noncoding GGGGCC hexanucleotide repeat of the C9orf72 gene on chromosome 9p21.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Several of the identified genetic factors in Amyotrophic Lateral Sclerosis (ALS) point to dysfunction in RNA processing as a major pathogenic mechanism. However, whether a precise RNA pathway is particularly affected remains unknown. Evidence suggests that FUS, that is mutated in familial ALS, and SMN, the causative factor in Spinal Muscular Atrophy (SMA), cooperate to the same molecular pathway, i.

View Article and Find Full Text PDF