CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level.
View Article and Find Full Text PDFBackground: Understanding the molecular pathogenesis of inflammatory bowel disease (IBD) has led to the discovery of new therapeutic targets that are more specific and effective. Our aim was to explore the molecular pathways and genes involved in IBD pathogenesis and to identify new therapeutic targets and novel biomarkers that can aid in the diagnosis of the disease.
Methods: To obtain the largest possible number of samples and analyze them comprehensively, we used a mega-analysis approach.
Up to 40% of luminal breast cancer patients carry activating mutations in the PIK3CA gene. PIK3CA mutations commonly co-occur with other mutations, but the implication of this co-occurrence may vary according to the specific genes involved. Here, we characterized a subgroup of luminal breast cancer expressing co-mutations in ARID1A and PIK3CA genes and identified their effect on important signaling pathways.
View Article and Find Full Text PDFPurpose: One-half of hormone receptor-positive (HR +) breast cancer (BC) patients have low expression of HER2 (HER2-low) and may benefit from trastuzumab deruxtecan (TDXd). This study aimed to identify parameters associated with HER2-low levels in primary and metastatic tumors. We specifically sought to determine whether OncotypeDX and HER2 mRNA levels could identify patients who would otherwise be considered HER2-negative by immunohistochemistry (IHC).
View Article and Find Full Text PDF