The Epileptor is a phenomenological model for seizure activity that is used in a personalized large-scale brain modeling framework, the Virtual Epileptic Patient, with the aim of improving surgery outcomes for drug-resistant epileptic patients. Transitions between interictal and ictal states are modeled as bifurcations, enabling the definition of seizure classes in terms of onset/offset bifurcations. This establishes a taxonomy of seizures grounded in their essential underlying dynamics and the Epileptor replicates the activity of the most common class, as observed in patients with focal epilepsy, which is characterized by square-wave bursting properties.
View Article and Find Full Text PDFProsopagnosia describes the inability to recognize others by their faces, which may be hereditary or acquired. Acquired cases result from intracranial lesions such as intracranial hemorrhage or ischemia. This case demonstrates acquired prosopagnosia secondary to an intracranial hemorrhage and thus exemplifies the importance of early symptom recognition for appropriate diagnosis and management.
View Article and Find Full Text PDFSeizures are a disruption of normal brain activity present across a vast range of species and conditions. We introduce an organizing principle that leads to the first objective Taxonomy of Seizure Dynamics (TSD) based on bifurcation theory. The 'dynamotype' of a seizure is the dynamic composition that defines its observable characteristics, including how it starts, evolves and ends.
View Article and Find Full Text PDFThe origin of dielectric breakdown was studied on 4H-SiC MOSFETs that failed after three months of high temperature reverse bias stress. A local inspection of the failed devices demonstrated the presence of a threading dislocation (TD) at the breakdown location. The nanoscale origin of the dielectric breakdown was highlighted with advanced high-spatial-resolution scanning probe microscopy (SPM) techniques.
View Article and Find Full Text PDFStudying the electrical and structural properties of the interface of the gate oxide (SiO) with silicon carbide (4H-SiC) is a fundamental topic, with important implications for understanding and optimising the performances of metal-oxide-semiconductor field effect transistor (MOSFETs). In this paper, near interface oxide traps (NIOTs) in lateral 4H-SiC MOSFETs were investigated combining transient gate capacitance measurements (C-t) and state of the art scanning transmission electron microscopy in electron energy loss spectroscopy (STEM-EELS) with sub-nm resolution. The C-t measurements as a function of temperature indicated that the effective NIOTs discharge time is temperature independent and electrons from NIOTs are emitted toward the semiconductor via-tunnelling.
View Article and Find Full Text PDF