Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored.
View Article and Find Full Text PDFA pot experiment was conducted to investigate the role of thiourea exogenous application (0 mg/L and 100 mg/L) on the morphological, physiological, and yield traits of two varieties of tomato (Naqeeb and Nadir) under different salt stress treatments (0, 60, and 120 mM) in completely randomized design (CRD). The imposition of salinity by rooting medium showed that salt stress reduced plant height by 20%, fresh shoot weight by 50%, dry shoot weight by 78%, fresh root weight by 43%, dry root weight by 84%, root length by 34%, shoot length by 32%, shoot K by 47%, Ca by 70%, chlorophyll a by 30%, chlorophyll b by 67%, and the number of seeds per berry by 53%, while shoot Na ions were increased by 90% in comparison to those grown with control treatment. However, the exogenous application of thiourea significantly enhanced dry root weight by 25% and the number of seeds per berry by 20% in comparison to untreated plants with thiourea when grown under salt stress.
View Article and Find Full Text PDFThe optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways.
View Article and Find Full Text PDFBackground: Acne is significantly influenced by glycemic load (GL), which is the result of the quantity of carbohydrates consumed and how quickly they are metabolized. There is an association between high-GL foods and severe acne. Such diets increase insulin and insulin-like growth factor 1 (IGF-1) levels, which then stimulate sebum production and androgen hormone release, which ultimately results in the development of acne.
View Article and Find Full Text PDF