Publications by authors named "M Saadatmand"

We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).

View Article and Find Full Text PDF

Human umbilical vein endothelial cells (HUVECs) play a fundamental role in angiogenesis. Herein, we introduce digital holographic microscopy (DHM) for the 3D quantitative morphological analysis of HUVECs in extracellular matrix (ECM)-based biomaterials as an angiogenesis model. The combination of volumetric information from DHM and the physicochemical and cytobiocompatibility data provided by fluorescence microscopy and cytology offers a comprehensive understanding of the angiogenesis-related parameters of HUVECs within the ECM.

View Article and Find Full Text PDF

Hyperactivity in children with attention-deficit/hyperactivity disorder (ADHD) leads to restlessness and impulse-control impairments. Nevertheless, the relation between ADHD symptoms and brain regions interactions remains unclear. We focused on dynamic causal modeling to study the effective connectivity in a fully connected network comprised of four regions of the default mode network (DMN) (linked to response control behaviors) and four other regions with previously-reported structural alterations due to ADHD.

View Article and Find Full Text PDF

Microfluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges.

View Article and Find Full Text PDF

Unlabelled: Microfluidic systems with the ability to mimic the female reproductive tract (FRT) and sperm features have emerged as promising methods to separate sperm with higher quality for the assistant reproductive technology. Thereby, we designed and fabricated a microfluidic system based on FRT features with a focus on rheotaxis and thigmotaxis for passive sperm separation. In this regard, four various geometries (linear, square, zigzag, and sinusoidal) were designed, and the effect of rheotaxis and thigmotaxis were investigated.

View Article and Find Full Text PDF