Publications by authors named "M S Werley"

Introduction: Diagnostic radiology interpretive errors in trauma patients can lead to missed diagnoses, compromising patient care. Due to this, our level II trauma center implemented a reread protocol of all radiographic imaging within 24 hours on our highest trauma activation level (Code T). We sought to determine the efficacy of this reread protocol in identifying missed diagnoses in Code T patients.

View Article and Find Full Text PDF

The use of very low nicotine tobacco cigarettes is currently being investigated as a possible harm reduction strategy. Here, we report the smoke chemistry, toxicity, and physical characteristics of very low nicotine cigarettes that were made using blended tobacco processed through a supercritical CO2 fluid extraction, which resulted in elimination of 96% of nicotine content (denicotinized (denic) tobacco). Three types of test cigarettes (TCs) were manufactured with tobacco filler containing 100% denic tobacco (TC100), 50% denic tobacco and 50% unextracted tobacco (TC50/50), and 100% unextracted tobacco (TC0).

View Article and Find Full Text PDF

A prototype electronic cigaret device and three formulations were evaluated in a 90-day rat inhalation study followed by a 42-day recovery period. Animals were randomly assigned to groups for exposure to low-, mid- and high-dose levels of aerosols composed of vehicle (glycerin and propylene glycol mixture); vehicle and 2.0% nicotine; or vehicle, 2.

View Article and Find Full Text PDF
Article Synopsis
  • E-cigarettes are increasingly popular in the U.S. and globally, but there's limited data on their formulations and harmful chemicals.
  • The study analyzed e-liquids and aerosols from commercial MarkTen(®) e-cigarettes to identify impurities and potentially harmful chemicals.
  • Findings showed nicotine-related impurities were low and the levels of harmful chemicals in aerosols were below established safety limits.
View Article and Find Full Text PDF

A formulation of tobacco extract containing 4% nicotine (TE) and similar nicotine formulation containing vehicle and 4% nicotine (NF) were evaluated using animal inhalation assays. Two 4-h inhalation exposures at 1 and 2 mg/L aerosol exposure concentrations, respectively, of the tobacco extract with 4% nicotine formulation showed that the LC50 was greater than 2 mg/L, the maximum concentration tested. All inhalation exposures were conducted using the capillary aerosol generator (CAG).

View Article and Find Full Text PDF