Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.
View Article and Find Full Text PDFThe sensitivity of soil organic carbon (SOC) decomposition in seasonally frozen soils, such as alpine ecosystems, to climate warming is a major uncertainty in global carbon cycling. Here we measure soil CO emission during four years (2018-2021) from the whole-soil warming experiment (4 °C for the top 1 m) in an alpine grassland ecosystem. We find that whole-soil warming stimulates total and SOC-derived CO efflux by 26% and 37%, respectively, but has a minor effect on root-derived CO efflux.
View Article and Find Full Text PDFAmeriFlux is a network of research sites that measure carbon, water, and energy fluxes between ecosystems and the atmosphere using the eddy covariance technique to study a variety of Earth science questions. AmeriFlux's diversity of ecosystems, instruments, and data-processing routines create challenges for data standardization, quality assurance, and sharing across the network. To address these challenges, the AmeriFlux Management Project (AMP) designed and implemented the BASE data-processing pipeline.
View Article and Find Full Text PDF