Publications by authors named "M S Shoichet"

Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug.

View Article and Find Full Text PDF

Injuries to the central nervous system, such as stroke and traumatic spinal cord injury, result in an aggregate scar that both limits tissue degeneration and inhibits tissue regeneration. The aggregate scar includes chondroitin sulfate proteoglycans (CSPGs), which impede cell migration and axonal outgrowth. Chondroitinase ABC (ChASE) is a potent yet fragile enzyme that degrades CSPGs, and thus may enable tissue regeneration.

View Article and Find Full Text PDF

Targeting complementary pathways in diseases such as cancer can be achieved with co-delivery of small interfering ribonucleic acid (siRNA) and small molecule drugs; however, current formulation strategies are typically limited to one, but not both. Here, ionizable small molecule drugs and siRNA are co-formulated in drug-rich nanoparticles. Ionizable analogs of the selective estrogen receptor degrader fulvestrant self-assemble into colloidal drug aggregates and cause endosomal disruption, allowing co-delivery of siRNA against a non-druggable target.

View Article and Find Full Text PDF

Viscoelasticity plays a key role in hydrogel design. We designed a physically cross-linked hydrogel with tunable viscoelasticity, comprising supramolecular-assembled peptides coupled to hyaluronan (HA), a native extracellular matrix component. We then explored the structural and molecular mechanisms underlying the mechanical properties of a series of these HA-peptide hydrogels.

View Article and Find Full Text PDF

Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development.

View Article and Find Full Text PDF