Publications by authors named "M S Pankey"

The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, , and compared them to proteins involved in cell interactions in Bilateria.

View Article and Find Full Text PDF

Dysbiosis and acclimatization are two starkly opposing outcomes of altered holobiont associations in response to environmental pollution. This study assesses whether shifts in microbial taxonomic composition and functional profiles of the cosmopolitan sponge indicate dysbiotic or acclimatized responses to water pollution. To do so, sponge and water samples were collected in a semi-enclosed environment (San Antonio Bay, Patagonia, Argentina) from variably polluted sites (.

View Article and Find Full Text PDF

Fundamental to holobiont biology is recognising how variation in microbial composition and function relates to host phenotypic variation. Sponges often exhibit considerable phenotypic plasticity and also harbour dense microbial communities that function to protect and nourish hosts. One of the most prominent sponge genera on Caribbean coral reefs is Agelas.

View Article and Find Full Text PDF

Sponges are common and diverse in California, but they have received little study in the region, and the identities of many common species remain unclear. Here we combine fresh collections and museum vouchers to revise the order Axinellida for California. Seven new species are described: Endectyon (Endectyon) hispitumulus, Eurypon curvoclavus, Aulospongus viridans, Aulospongus lajollaensis, Halicnemia litorea, Halicnemia montereyensis, and Halicnemia weltoni.

View Article and Find Full Text PDF

When attacked, hagfishes produce a soft, fibrous defensive slime within a fraction of a second by ejecting mucus and threads into seawater. The rapid setup and remarkable expansion of the slime make it a highly effective and unique form of defense. How this biomaterial evolved is unknown, although circumstantial evidence points to the epidermis as the origin of the thread- and mucus-producing cells in the slime glands.

View Article and Find Full Text PDF