Publications by authors named "M S Muha"

A simple integration of molecular and colloidal self-assembly approaches with photopatterning is shown to produce multifunctional patterns of amphiphilic colloidal crystals. These crystals display binary spatial patterns of wettability by water and a single photonic stop-band in air. Upon exposure to water, the uniform stop-band is replaced by a pattern of coexisting stop-bands that reflect the underlying pattern of surface wetting.

View Article and Find Full Text PDF

We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface.

View Article and Find Full Text PDF

We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained.

View Article and Find Full Text PDF

The operation of an acoustic microscope having a resolution of 15 mm has been demonstrated. It uses as a coupling medium superfluid (4 )He colder than 0.9 K and pressurized to greater than 20 bar.

View Article and Find Full Text PDF