Publications by authors named "M S Laasanen"

Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms.

View Article and Find Full Text PDF

Objectives: The authors examined the validity, interobserver reliability and interscanner variation in detecting bone erosions with ultrasonography using a custom-made phantom.

Methods: 21 bovine bones were used. Artificial erosions were made into 15 bones and six bones were left as controls.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) is one of the most potential methods for non-invasive diagnosis of cartilage disorders. Several methods have been established for clinical use; T(1) relaxation time imaging with negatively charged contrast agent (delayed gadolinium enhanced MRI of cartilage, dGEMRIC) has been shown to be sensitive to proteoglycan (PG) content while T(2) relaxation time has been demonstrated to express properties of the collagen fibril network. The use of native T(1) relaxation time has received less attention.

View Article and Find Full Text PDF

In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA) earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g.

View Article and Find Full Text PDF

Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration.

View Article and Find Full Text PDF