Publications by authors named "M S Hoag"

Background: Regulations put in place to protect the privacy of individuals receiving substance use disorder (SUD) treatment have resulted in an unintended consequence of siloed SUD treatment and referral information outside of the integrated electronic health record (EHR). Recent revisions to these regulations have opened the door to data integration, which creates opportunities for enhanced patient care and more efficient workflows. We report on the experience of one safety-net hospital system integrating SUD treatment data into the EHR.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD) is an enzyme that uses an elaborate architecture to catalyze a simple net reaction: the reduction of the vinylic bond of uracil and thymine. Known DPDs have two active sites separated by approximately 60 Å. One active site has an FAD cofactor and binds NAD(P) and the other has an FMN cofactor and binds pyrimidines.

View Article and Find Full Text PDF

The landscape of current cancer immunotherapy is dominated by antibodies targeting PD-1/PD-L1 and CTLA-4 that have transformed cancer therapy, yet their efficacy is limited by primary and acquired resistance. The blockade of additional immune checkpoints, especially TIGIT and LAG-3, has been extensively explored, but so far only a LAG-3 antibody has been approved for combination with nivolumab to treat unresectable or metastatic melanoma. Here we report the development of a PDL1 × TIGIT bi-specific antibody (bsAb) GB265, a PDL1 × LAG3 bsAb GB266, and a PDL1 × TIGIT × LAG3 tri-specific antibody (tsAb) GB266T, all with intact Fc function.

View Article and Find Full Text PDF

The classical `knob-into-holes' (KIH) strategy (knob(T366Y)/hole (Y407T)) has successfully enhanced the heterodimerization of a bispecific antibody (BsAb) resulting in heterodimer formation up to 92% of protein A (ProA)-purified protein pool. However, it does not show high efficiency for every BsAb. KIH was initially applied to a CD20/CD3 BsAb.

View Article and Find Full Text PDF

The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N-formyltetrahydrofolate (N-fTHF) as a co-substrate formyl donor to convert N-hydroxyornithine (OHOrn) to N-formyl- N-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.

View Article and Find Full Text PDF