Environ Sci Technol
October 2024
The extensive use of single-use or disposable face masks has raised environmental concerns related to microfiber contamination. In contrast, research on the potential release and ecological impact of microfibers from washable masks (WMs), suggested as an eco-friendly alternative, is currently lacking. Here, we comprehensively investigated the release of microfibers from disposable and WMs of different types in simulated aquatic environments and real-life scenarios, including shaking, disinfection, hand washing, and machine washing.
View Article and Find Full Text PDFThe ability to image tissues in three dimensions (3D) with label-free molecular contrast at the mesoscale would be a valuable capability in biology and biomedicine. Here, we introduce Raman spectral projection tomography (RSPT) for volumetric molecular imaging with optical sub-millimeter spatial resolution. We have developed a RSPT imaging instrument capable of providing 3D molecular contrast in transparent and semi-transparent samples.
View Article and Find Full Text PDFObjectives: The aim of the present study was to assess the reproducibility of findings in cone beam CT (CBCT) scout images. Furthermore, the study aimed to assess whether a scout image shows pathology not seen within the CBCT volume (ie, added diagnostic information) and therefore must be assessed on the same terms as the full volume.
Methods: Using a retrospective design, 233 CBCT reports and scout images were assessed.
The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization.
View Article and Find Full Text PDFCurrent techniques for monitoring disease progression and testing drug efficacy in animal models of inflammatory arthritis are either destructive, time-consuming, subjective, or require ionizing radiation. To accommodate this, we have developed a non-invasive and label-free optical system based on Raman spectroscopy for monitoring tissue alterations in rodent models of arthritis at the biomolecular level. To test different sampling geometries, the system was designed to collect both transmission and reflection mode spectra.
View Article and Find Full Text PDF