Am J Clin Pathol
December 2007
Rapid methods are needed for public health and military applications to specifically identify Francisella tularensis, the causative agent of tularemia in humans. A comparative analysis of the capabilities of multiple technologies was performed using a well-defined set of organisms to determine which approach would provide the most information in the shortest time. High-resolution molecular techniques, including pulsed-field gel electrophoresis, amplified fragment length polymorphism, and ribotyping, provided subspecies level identification within approximately 24 hours after obtaining an isolate, whereas multilocus variable number tandem repeat analysis with 8 or 25 targets provided strain level discrimination within about 12 hours.
View Article and Find Full Text PDFGeneration of a strong electrical potential in the cochlea is uniquely mammalian and may reflect recent evolutionary advances in cellular voltage-dependent amplifiers. This endocochlear potential is hypothesized to dramatically improve hearing sensitivity, a concept that is difficult to explore experimentally, because manipulating cochlear function frequently causes rapid degenerative changes early in development. Here, we examine the deafness phenotype in adult Claudin 11-null mice, which lack the basal cell tight junctions that give rise to the intrastrial compartment and find little evidence of cochlear pathology.
View Article and Find Full Text PDF