Trees transport gases from below ground into the atmosphere through the process of transpiration. Tracing gases transported through this mechanism continuously and under field conditions remains an experimental challenge. Here we measured gases dissolved in tree sap in-situ and in real time, aiming to simultaneously analyse the transport of several gases (He, Ar, Kr, N2, O2, CO2) from the soil, through the trees, into the atmosphere.
View Article and Find Full Text PDFSurface water (SW) - groundwater (GW) interactions exhibit complex spatial and temporal patterns often studied using tracers. However, most natural and artificial tracers have limitations in studying SW-GW interactions, particularly if no significant contrasts in concentrations between SW and GW exist or can be maintained for long durations. In such context, (noble) gases have emerged as promising alternatives to add to the available tracer methods, especially with the recent development of portable mass spectrometers, which enable continuous monitoring of dissolved gas concentrations directly in the field.
View Article and Find Full Text PDFThe extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to explain anomalies observed in pelagic gas concentrations. Here, we demonstrate through high-frequency measurements in a eutrophic lake that daily convective horizontal circulation generates littoral-pelagic advective gas fluxes one order of magnitude larger than typical horizontal fluxes used in gas budgets.
View Article and Find Full Text PDFThe sealing characteristics of the geological formation located above a CO storage reservoir, the so-called caprock, are essential to ensure efficient geological carbon storage. If CO were to leak through the caprock, temporal changes in fluid geochemistry can reveal fundamental information on migration mechanisms and induced fluid-rock interactions. Here, we present the results from a unique in-situ injection experiment, where CO-enriched fluid was continuously injected in a faulted caprock analogue.
View Article and Find Full Text PDFThe quantification of carbon cycling across the groundwater-stream-atmosphere continuum (GSAC) is crucial for understanding regional and global carbon cycling. However, this quantification remains challenging due to highly coupled carbon exchange and turnover in the GSAC. Here, we disentangled carbon cycling processes in a representative groundwater-stream-atmosphere transect by obtaining and numerically simulating high-resolution time series of dissolved He, Ar, Kr, O, CO, and CH concentrations.
View Article and Find Full Text PDF