Publications by authors named "M S Bobji"

In the present work, the growth kinetics of nickel nanorods inside commercially available Whatman nanoporous membrane is explored to achieve uniform deposition over a large area of the membrane. Uniform electrodeposition inside nanopores requires continuous presence of solute ions near the deposition site and reduction of ions. To control ion diffusion and reduction near the deposition site, the effect of DC potential and pulsed potential with various duty cycles and solution temperatures is analyzed.

View Article and Find Full Text PDF

Needle insertion into soft biological tissues is a common process in various surgical procedures. During insertion, soft biological tissues with different water contents undergo large deformation often leading to uncontrollable cracks and tissue damage. Despite the numerous experimental studies and numerical modelling of needle-tissue interaction, the results do not show any consistency mainly due to the heterogeneity of tissue properties and opaqueness.

View Article and Find Full Text PDF

Polyacrylamide-based hydrogels are widely used as potential candidates for cartilage replacement. However, their bioapplicability is sternly hampered due to their limited mechanical strength and puncture resistance. In the present work, the strength of polyacrylamide (PAM) hydrogels was increased using titanium oxide (TiO) and carbon nanotubes (CNTs) separately and a combination of TiO with CNTs in a PAM matrix, which was interlinked by the bonding between nanoparticles and polymers with the deployment of density functional theory (DFT) approach.

View Article and Find Full Text PDF

Needle insertion, a standard process for various minimally invasive surgeries, results in tissue damage which sometimes leads to catastrophic outcomes. Opaqueness and inhomogeneity of the tissues make it difficult to observe the underlying damage mechanisms. In this paper, we use transparent and homogeneous polyacrylamide hydrogel as a tissue mimic to investigate the damages caused during needle insertion.

View Article and Find Full Text PDF

Thin polymer and polymer nanocomposite (PNC) films are being extensively used as advanced functional coating materials in various technological applications. Since it is widely known that various properties of these thin films, especially their thermo-mechanical behavior, can be considerably different from the bulk depending on the thickness as well as interaction with surrounding media, it is imperative to study these properties directly on the films. However, quite often, it becomes difficult to perform these measurements reliably due to a dearth of techniques, especially to measure mechnical or transport properties like the viscosity of thin polymer or PNC films.

View Article and Find Full Text PDF