Publications by authors named "M S Bessell"

Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars.

View Article and Find Full Text PDF

The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time.

View Article and Find Full Text PDF

The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a few--and potentially only one--low-energy supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae seems surprising, because it had been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron.

View Article and Find Full Text PDF

Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material.

View Article and Find Full Text PDF

The chemical composition of the most metal-deficient stars largely reflects the composition of the gas from which they formed. These old stars provide crucial clues to the star formation history and the synthesis of chemical elements in the early Universe. They are the local relics of epochs otherwise observable only at very high redshifts; if totally metal-free ('population III') stars could be found, this would allow the direct study of the pristine gas from the Big Bang.

View Article and Find Full Text PDF