Previous studies indicate a positive correlation between the duration of estrus prior to ovulation and likelihood of pregnancy in embryo recipient mares. However, the mechanisms by which the duration of estrus before may affect fertility remains unclear. This study aimed to determine the effect of different durations of estradiol exposure, prior to progesterone administration, on embryo viability in anestrous recipient mares, and endometrial expression of genes thought to influence embryo survival.
View Article and Find Full Text PDFIn vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE).
View Article and Find Full Text PDFThe cryotolerance of equine blastocysts larger than 300 μm can be improved by aspirating blastocoele fluid prior to vitrification; however, it is not known whether blastocoele aspiration also enables successful slow-freezing. The aim of this study was therefore to determine whether slow-freezing of expanded equine embryos following blastocoele collapse was more or less damaging than vitrification. Grade 1 blastocysts recovered on day 7 or 8 after ovulation were measured (>300-550 μm, n = 14 and > 550 μm, n = 19) and blastocoele fluid was aspirated prior to slow-freezing in 10% glycerol (n = 14), or vitrification (n = 13) in 16.
View Article and Find Full Text PDFError-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation.
View Article and Find Full Text PDFBackground: During normal zygotic division, two haploid parental genomes replicate, unite and segregate into two biparental diploid blastomeres.
Results: Contrary to this fundamental biological tenet, we demonstrate here that parental genomes can segregate to distinct blastomeres during the zygotic division resulting in haploid or uniparental diploid and polyploid cells, a phenomenon coined heterogoneic division. By mapping the genomic landscape of 82 blastomeres from 25 bovine zygotes, we show that multipolar zygotic division is a tell-tale of whole-genome segregation errors.