Publications by authors named "M Ruether"

Understanding the key parameters that control the self-assembly process is critical to predict self-assembly modes in multi-component systems, which will lead to the development of nanofibrous materials with tuneable properties. Enantiomeric amino acid-based low-molecular-weight gelators (LMWGs) were mixed in polar (polar protic) and aromatic apolar (aromatic) solvents and compared to their individual counterparts to probe the effect of solvent polarity on the self-assembly process. Scanning electron microscopy (SEM) reveals that xerogels of individual components display hollow needles in polar protic solvents, while chiral coils are observed in aromatic solvents.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating a new hybrid molecule combining benzophenone and indanone structures for potential enhanced anti-cancer properties.
  • Key compounds were synthesized and tested against various cancer cell lines, with certain modifications showing significant cytotoxic effects.
  • Results indicate that these hybrid molecules cause cell cycle disruption and may induce DNA damage in breast cancer cells, highlighting their potential as effective cancer treatments.
View Article and Find Full Text PDF

The performance of modular, networked quantum technologies will be strongly dependent upon the quality of their quantum light-matter interconnects. Solid-state colour centres, and in particular T centres in silicon, offer competitive technological and commercial advantages as the basis for quantum networking technologies and distributed quantum computing. These newly rediscovered silicon defects offer direct telecommunications-band photonic emission, long-lived electron and nuclear spin qubits, and proven native integration into industry-standard, CMOS-compatible, silicon-on-insulator (SOI) photonic chips at scale.

View Article and Find Full Text PDF

The global quantum internet will require long-lived, telecommunications-band photon-matter interfaces manufactured at scale. Preliminary quantum networks based on photon-matter interfaces that meet a subset of these demands are encouraging efforts to identify new high-performance alternatives. Silicon is an ideal host for commercial-scale solid-state quantum technologies.

View Article and Find Full Text PDF

Rising global demand for biodegradable materials and green sources of energy has brought attention to lignin. Herein, we report a method for manufacturing standalone lignin membranes without additives for the first time to date. We demonstrate a scalable method for macroporous (∼100 to 200 nm pores) lignin membrane production using four different organosolv lignin materials under a humid environment (>50% relative humidity) at ambient temperatures (∼20 °C).

View Article and Find Full Text PDF