Publications by authors named "M Rosseneu"

Polymethacrylates are vinyl-based polymers that are used for DNA transfection. Cationic polymethacrylates efficiently condense DNA by forming inter-polyelectrolyte complexes. Their use for DNA transfection is, however, limited due to their low ability to interact with membranes.

View Article and Find Full Text PDF

Using molecular dynamics simulations, we studied the mode of association of the cell-penetrating peptide penetratin with both a neutral and a charged bilayer. The results show that the initial peptide-lipid association is a fast process driven by electrostatic interactions. The homogeneous distribution of positively charged residues along the axis of the helical peptide, and especially residues K46, R53, and K57, contribute to the association of the peptide with lipids.

View Article and Find Full Text PDF

In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters. These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1+R1 and NBD2+R2.

View Article and Find Full Text PDF

The aim of this study was the expression and production in Escherichia coli of the nucleotide-binding domains (NBDs) of the human ABCA1 transporter, in a soluble, non-denatured form. To increase the protein solubility, and avoid expression in E. coli inclusion bodies, we extended the length of the expressed NBD domains, to include proximal domains.

View Article and Find Full Text PDF

Penetratin is a 16-residue peptide [RQIKIWFQNRRMKWKK(43-58)] derived from the Antennapedia homeodomain, which is used as a vector for cellular internalization of hydrophilic molecules. In order to unravel the membrane translocation mechanism, we synthesized new penetratin variants. The contribution of the positively charged residues was studied by double substitutions of Lys and/or Arg residues to Ala, while the specific contribution of Trp48 and Trp56 was studied by individual substitution of these residues to Phe.

View Article and Find Full Text PDF