Publications by authors named "M Rosa Fernandez Del Olmo"

Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed.

View Article and Find Full Text PDF
Article Synopsis
  • Most mammalian cells possess circadian clocks that regulate the timing of various biological processes, but how they adapt to changes in metabolism is not well understood.* -
  • This study utilized single-cell analysis to explore the relationship between circadian rhythms and protein stability without altering genes, focusing on key proteins involved in the circadian clock.* -
  • Findings revealed that the duration of circadian rhythms adjusts based on the degradation rates of repressor proteins, with stability influenced by the phase of the circadian cycle, challenging existing theories about these mechanisms.*
View Article and Find Full Text PDF

The loop-mediated isothermal amplification (LAMP) technique is a great alternative to PCR-based methods, as it is fast, easy to use and works with high sensitivity and specificity without the need for expensive instruments. However, one of the limitations of LAMP is difficulty in achieving the simultaneous detection of several targets in a single tube, as the methodologies that allow this rely on fluorogenic probes containing specific target sequences, complicating their adaptation and the optimization of assays. Here, we summarize different methods for the development of multiplex LAMP assays based on sequence-specific detection, illustrated with a schematic representation of the technique, and evaluate their practical application based on the real-time detection and quantification of results, the possibility to visualize the results at a glance, the prior stabilization of reaction components, promoting the point-of-care use, the maximum number of specific targets amplified, and the validation of the technique in clinical samples.

View Article and Find Full Text PDF

Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration.

View Article and Find Full Text PDF

Circadian clocks are endogenous oscillators present in almost all cells that drive daily rhythms in physiology and behavior. There are two mechanisms that have been proposed to explain how circadian rhythms are generated in mammalian cells: through a transcription-translation feedback loop (TTFL) and based on oxidation/reduction reactions, both of which are intrinsically stochastic and heterogeneous at the single cell level. In order to explore the emerging properties of stochastic and heterogeneous redox oscillators, we simplify a recently developed kinetic model of redox oscillations to an amplitude-phase oscillator with 'twist' (period-amplitude correlation) and subject to Gaussian noise.

View Article and Find Full Text PDF