Publications by authors named "M Romkes"

Personalized cancer therapy relies on identifying patient subsets that benefit from a therapeutic intervention and suggest alternative regimens for those who don't. A new data integrative approach, based on graphical models, was applied on our multi-modal -omics, and clinical data cohort of metastatic melanoma patients. We found that response to chemotherapy is directly linked to ten gene expression, four methylation variables and PARP1 SNP rs1805407.

View Article and Find Full Text PDF

Non-small cell lung cancers (NSCLCs) frequently express estrogen receptor (ER) β, and estrogen signaling is active in many lung tumors. We investigated the ability of genes contained in the prediction analysis of microarray 50 (PAM50) breast cancer risk predictor gene signature to provide prognostic information in NSCLC. Supervised principal component analysis of mRNA expression data was used to evaluate the ability of the PAM50 panel to provide prognostic information in a stage I NSCLC cohort, in an all-stage NSCLC cohort, and in The Cancer Genome Atlas data.

View Article and Find Full Text PDF

Introduction: Genome-wide association studies (GWAS) have consistently identified specific lung cancer susceptibility regions. We evaluated the lung cancer-predictive performance of single-nucleotide polymorphisms (SNPs) in these regions.

Methods: Lung cancer cases (N = 778) and controls (N = 1166) were genotyped for 77 SNPs located in GWAS-identified lung cancer susceptibility regions.

View Article and Find Full Text PDF

Background: Carboplatin/paclitaxel (CP), with or without sorafenib, result in objective response rates of 18-20 % in unselected chemotherapy-naïve patients. Molecular predictors of survival and response to CP-based chemotherapy in metastatic melanoma (MM) are critical to improving the therapeutic index. Intergroup trial E2603 randomized MM patients to CP with or without sorafenib.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis.

View Article and Find Full Text PDF