Publications by authors named "M Rohrwild"

Recent studies of the 20S proteasome from Thermoplasma acidophilum have uncovered some fundamental new properties of its catalytic mechanism. Unlike conventional proteases, 20S and 26S proteasomes degrade protein substrates in a highly processive fashion. They cleave a protein substrate to small peptides before attacking another substrate molecule.

View Article and Find Full Text PDF

HslVU is a new two-component protease in Escherichia coli composed of the proteasome-related peptidase HslIV and the ATPase HsIU. We have used electron microscopy and image analysis to examine the structural organization of HslV and HslU homo-oligomers and the active HslVU enzyme. Electron micrographs of HslV reveal ring-shaped particles, and averaging of top views reveal six-fold rotational symmetry, in contrast to other beta-type proteasome subunits, which form rings with seven-fold symmetry.

View Article and Find Full Text PDF

The hslVU operon in Escherichia coli encodes two heat shock proteins, HslV, a 19-kDa protein homologous to beta-type subunits of the 20 S proteasomes, and HslU, a 50-kDa protein related to the ATPase ClpX. We have recently shown that HslV and HslU can function together as a novel ATP-dependent protease, the HslVU protease. We have now purified both proteins to apparent homogeneity from extracts of E.

View Article and Find Full Text PDF

We have isolated a new type of ATP-dependent protease from Escherichia coli. It is the product of the heat-shock locus hslVU that encodes two proteins: HslV, a 19-kDa protein similar to proteasome beta subunits, and HslU, a 50-kDa protein related to the ATPase ClpX. In the presence of ATP, the protease hydrolyzes rapidly the fluorogenic peptide Z-Gly-Gly-Leu-AMC and very slowly certain other chymotrypsin substrates.

View Article and Find Full Text PDF