Front Artif Intell
March 2023
Introduction: Large pretrained language models have recently conquered the area of natural language processing. As an alternative to predominant masked language modeling introduced in BERT, the T5 model has introduced a more general training objective, namely sequence to sequence transformation, which more naturally fits text generation tasks. The monolingual variants of T5 models have been limited to well-resourced languages, while the massively multilingual T5 model supports 101 languages.
View Article and Find Full Text PDFNatural language processing (NLP) is an area of artificial intelligence that applies information technologies to process the human language, understand it to a certain degree, and use it in various applications. This area has rapidly developed in the past few years and now employs modern variants of deep neural networks to extract relevant patterns from large text corpora. The main objective of this work is to survey the recent use of NLP in the field of pharmacology.
View Article and Find Full Text PDFBackground: Cardiovascular disorders in general are responsible for 30% of deaths worldwide. Among them, hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease that is present in about 1 of 500 young adults and can cause sudden cardiac death (SCD).
Objective: Although the current state-of-the-art methods model the risk of SCD for patients, to the best of our knowledge, no methods are available for modeling the patient's clinical status up to 10 years ahead.
Background: Machine learning (ML) and artificial intelligence are emerging as important components of precision medicine that enhance diagnosis and risk stratification. Risk stratification tools for hypertrophic cardiomyopathy (HCM) exist, but they are based on traditional statistical methods. The aim was to develop a novel machine learning risk stratification tool for the prediction of 5-year risk in HCM.
View Article and Find Full Text PDFVirtual population generation is an emerging field in data science with numerous applications in healthcare towards the augmentation of clinical research databases with significant lack of population size. However, the impact of data augmentation on the development of AI (artificial intelligence) models to address clinical unmet needs has not yet been investigated. In this work, we assess whether the aggregation of real with virtual patient data can improve the performance of the existing risk stratification and disease classification models in two rare clinical domains, namely the primary Sjögren's Syndrome (pSS) and the hypertrophic cardiomyopathy (HCM), for the first time in the literature.
View Article and Find Full Text PDF