ACS Appl Mater Interfaces
January 2025
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFAs the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.
View Article and Find Full Text PDFAnthropogenic activities have resulted in enormous increases in atmospheric CO concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO, in which polymers have played an integral role.
View Article and Find Full Text PDF