Prior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid-dependent manner through the actions of the viral envelope proteins, hemagglutinin and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, we assessed how the physicochemical properties of mucus influence its ability to effectively capture IAV with altered sialic acid preference using fluorescence video microscopy and multiple particle tracking.
View Article and Find Full Text PDFBackground: Active vitamin-D deficiency is a potential modifiable risk factor for increased ventricular mass. We explored the effects of active vitamin-D (calcitriol) treatment on left ventricular mass in patients with type-2 diabetes (T2D) and chronic kidney disease (CKD).
Methods: We performed a 48-week duration single center randomized double-blind parallel group trial examining the impact of calcitriol, 0.
Fragile X syndrome is caused by lack of the protein FMRP. FMRP mediates mRNA binding, dendritic mRNA transport and translational control at spines. We examined the role of functional domains of FMRP in neuronal RNA-granule formation and dendritic transport using different FMRP variants, including the mutant FMRP_I304N and the splice-variant FMRP_Iso12.
View Article and Find Full Text PDFAltered glutamatergic and dopaminergic signaling has been proposed as contributing to the specific striatal cell death observed in Huntington's disease (HD). However, the precise mechanisms by which mutant huntingtin sensitize striatal cells to dopamine and glutamate inputs remain unclear. Here, we demonstrate in knock-in HD striatal cells that mutant huntingtin enhances dopamine-mediated striatal cell death via dopamine D(1) receptors.
View Article and Find Full Text PDFThe FMR1 gene, mutated in Fragile X syndrome patients, has been modeled in mice with a neomycin cassette inserted in exon 5 of the mouse Fmr1 gene creating an Fmr1 knockout (Fmr1 KO) allele. This results in animals lacking Fmr1 protein (Fmrp) expression in all tissues. We have created a new, more versatile Fmr1 in vivo KO model (Fmr1 KO2) and generated conditional Fmr1 KO (CKO) mice by flanking the promoter and first exon of Fmr1 with lox P sites.
View Article and Find Full Text PDF