Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. The limited efficacy of recent therapies in clinical development may be linked to lack of drug penetration to the affected motor neurons due to the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB).
Methods: In this work, the safety and efficacy of repeated short transient opening of the BSCB by low intensity pulsed ultrasound (US, sonication) was studied in females of an ALS mouse model (B6.
Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a severe autoimmune disease of unknown etiology. The major histocompatibility complex (MHC) class I-related chain A (MICA) and B (MICB) are stress-inducible cell surface molecules. MICA and MICB label malfunctioning cells for their recognition by cytotoxic lymphocytes such as natural killer (NK) cells.
View Article and Find Full Text PDFNeuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1 mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production.
View Article and Find Full Text PDFMicroglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration.
View Article and Find Full Text PDF